Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Neurophysiol ; 157: 61-72, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064929

RESUMEN

OBJECTIVE: We investigated whether sensory-evoked cortical potentials could be used to estimate the age of an infant. Such a model could be used to identify infants who deviate from normal neurodevelopment. METHODS: Infants aged between 28- and 40-weeks post-menstrual age (PMA) (166 recording sessions in 96 infants) received trains of visual and tactile stimuli. Neurodynamic response functions for each stimulus were derived using principal component analysis and a machine learning model trained and validated to predict infant age. RESULTS: PMA could be predicted accurately from the magnitude of the evoked responses (training set mean absolute error and 95% confidence intervals: 1.41 [1.14; 1.74] weeks,p = 0.0001; test set mean absolute error: 1.55 [1.21; 1.95] weeks,p = 0.0002). Moreover, we show that their predicted age (their brain age) is correlated with a measure known to relate to maturity of the nervous system and is linked to long-term neurodevelopment. CONCLUSIONS: Sensory-evoked potentials are predictive of age in premature infants and brain age deviations are related to biologically and clinically meaningful individual differences in nervous system maturation. SIGNIFICANCE: This model could be used to detect abnormal development of infants' response to sensory stimuli in their environment and may be predictive of neurodevelopmental outcome.


Asunto(s)
Potenciales Evocados , Recien Nacido Prematuro , Recién Nacido , Lactante , Humanos , Recien Nacido Prematuro/fisiología , Encéfalo
2.
Neuroimage Clin ; 33: 102914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34915328

RESUMEN

Prematurity can result in widespread neurodevelopmental impairment, with the impact of premature extrauterine exposure on brain function detectable in infancy. A range of neurodynamic and haemodynamic functional brain measures have previously been employed to study the neurodevelopmental impact of prematurity, with methodological and analytical heterogeneity across studies obscuring how multiple sensory systems are affected. Here, we outline a standardised template analysis approach to measure evoked response magnitudes for visual, tactile, and noxious stimulation in individual infants (n = 15) using EEG. By applying these templates longitudinally to an independent cohort of very preterm infants (n = 10), we observe that the evoked response template magnitudes are significantly associated with age-related maturation. Finally, in a cross-sectional study we show that the visual and tactile response template magnitudes differ between a cohort of infants who are age-matched at the time of study but who differ according to whether they are born during the very preterm or late preterm period (n = 10 and 8 respectively). These findings demonstrate the significant impact of premature extrauterine exposure on brain function and suggest that prematurity can accelerate maturation of the visual and tactile sensory system in infants born very prematurely. This study highlights the value of using a standardised multi-modal evoked-activity analysis approach to assess premature neurodevelopment, and will likely complement resting-state EEG and behavioural assessments in the study of the functional impact of developmental care interventions.


Asunto(s)
Enfermedades del Prematuro , Recien Nacido Prematuro , Encéfalo/fisiología , Estudios Transversales , Humanos , Lactante , Recién Nacido , Órganos de los Sentidos
3.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847561

RESUMEN

Despite the high burden of pain experienced by hospitalised neonates, there are few analgesics with proven efficacy. Testing analgesics in neonates is experimentally and ethically challenging and minimising the number of neonates required to demonstrate efficacy is essential. EEG (electroencephalography)-derived measures of noxious-evoked brain activity can be used to assess analgesic efficacy; however, as variability exists in neonate's responses to painful procedures, large sample sizes are often required. Here, we present an experimental paradigm to account for individual differences in noxious-evoked baseline sensitivity which can be used to improve the design of analgesic trials in neonates. The paradigm is developed and tested across four observational studies using clinical, experimental, and simulated data (92 neonates). We provide evidence of the efficacy of gentle brushing and paracetamol, substantiating the need for randomised controlled trials of these interventions. This work provides an important step towards safe, cost-effective clinical trials of analgesics in neonates.


Hospitalized newborns often undergo medical procedures, like blood tests, without pain relief. This can cause the baby to experience short-term distress that may have negative consequences later in life. However, testing the effects of pain relief in newborns is challenging because, unlike adults, they cannot report how much pain they are experiencing. One way to overcome this is to record the brain activity of newborns during a painful procedure and to see how these signals are modified following pain relief. Randomized controlled trials are the gold standard for these kinds of medical assessments, but require a high number of participants to account for individual differences in how babies respond to pain. Finding ways to reduce the size of pain control studies could lead to faster development of pain relief methods. Here, Cobo, Hartley et al. demonstrate a way to reduce the number of newborns needed to test potential pain-relieving interventions. In the experiments, the brain activity of nine babies was measured after a gentle poke and after a painful clinically required procedure. Cobo, Hartley et al. found that the babies' response to the gentle poke correlated with their response to pain. Further data analysis revealed that this information can be used to predict the variability in pain experienced by different newborns, reducing the number of participants needed for pain relief trials. Next, Cobo, Hartley et al. used this new approach in two pilot tests. One showed that gently stroking an infant's leg before blood is drawn from their heel reduced their brains' response to pain. The second showed that giving a baby the painkiller paracetamol lessened the brain's response to immunisation. The new approach identified by Cobo, Hartley et al. may enable smaller studies that can more quickly identify ways to reduce pain in babies. Furthermore, this work suggests that gentle brushing and paracetamol could provide pain relief for newborns undergoing hospital acute procedures. However, more formal clinical trials are needed to test the effectiveness of these two strategies.


Asunto(s)
Encéfalo/efectos de los fármacos , Electroencefalografía , Conducta del Lactante/efectos de los fármacos , Manejo del Dolor , Dimensión del Dolor , Percepción del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Dolor/prevención & control , Acetaminofén/uso terapéutico , Factores de Edad , Analgésicos no Narcóticos/uso terapéutico , Recolección de Muestras de Sangre/efectos adversos , Encéfalo/fisiopatología , Ensayos Clínicos como Asunto , Simulación por Computador , Determinación de Punto Final , Femenino , Humanos , Recién Nacido , Masculino , Dolor/diagnóstico , Dolor/etiología , Dolor/fisiopatología , Manejo del Dolor/efectos adversos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Proyectos de Investigación , Estudios Retrospectivos , Tacto Terapéutico , Resultado del Tratamiento , Vacunación/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...